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Abstract

This thesis presents Safe Reactive Planning for Granular Terrain (SRPGT), a navigation

framework for autonomous exploration in granular environments where proprioceptive sens-

ing is the main mode of terrain mapping. The method is motivated by challenges faced in

planetary exploration, particularly in scenarios where deformable terrain properties cannot

be reliably inferred from visual input. Developed within the context of NASA’s LASSIE

(Legged Autonomous Surface Science In Analogue Environments) project, SRPGT enables

a legged robot to traverse unfamiliar regolith terrain using only proprioceptive feedback from

its limbs.

The core contribution is a dual-layer architecture combining global terrain expansion with

real-time reactive control. The global layer models terrain risk using a Gaussian Process

updated through in-place mechanical tests at each step. It incrementally expands a certified

safe set of traversable regions using a confidence-aware exploration strategy inspired by

Safe Bayesian Optimization. The local control layer uses a diffeomorphism-based reactive

controller adapted from Voronoi and power diagram methods, allowing the robot to navigate

through complex, concave environments without requiring global replanning.

Simulations demonstrate that SRPGT successfully balances exploration and exploitation,

avoids unsafe regions, and generalizes across navigation and pure exploration tasks. The

algorithm achieves real-time performance and robustness without vision, supporting future

missions in low-light or dust-obscured extraterrestrial environments. This work establishes a

foundation for proprioception-driven planning, expanding autonomous mobility capabilities

in safety-critical planetary operations.

ix



Chapter 1

Introduction

The future of space exploration increasingly relies on our ability to establish a sustainable hu-

man presence beyond Earth. As missions become more ambitious, with visions of long-term

habitation on the Moon, Mars, and other celestial bodies, the importance of robust robotic

systems capable of autonomous exploration becomes ever more critical. Before building the

infrastructure that future astronauts will depend on, we must first navigate and understand

unfamiliar and often hazardous terrains, frequently without direct human supervision.

For decades, wheeled rovers have served as humanity’s primary tools for planetary ex-

ploration. Their successes, such as Spirit and Opportunity’s extensive traverses across the

Martian surface and Curiosity and Perseverance’s ongoing missions, have significantly ex-

panded our knowledge of other worlds. However, as we move toward the goal of sustained

human presence, the limitations of traditional rovers have become increasingly apparent.

These systems depend heavily on human oversight and primarily on camera-based sensors,

interpreting their environment largely through visual data. While vision provides rich spatial

information, it offers only an indirect understanding of the terrain.

This reliance on vision presents significant risks when operating in granular, deformable

environments. Materials such as regolith, volcanic ash, and fine particulate dust, which are

common on planetary surfaces, can be deceptive. Two patches of ground may appear iden-

tical but respond very differently under load. One may be stable and supportive, while the

other collapses under minimal pressure. Cameras, regardless of resolution or sophistication,
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are inherently limited in their ability to infer critical mechanical properties such as cohesion,

bearing strength, or subsurface instability.

A poignant reminder of these challenges comes from the story of the Spirit rover, which

in 2009 became irretrievably stuck in Martian sand despite careful navigation. The episode

captured public attention and was memorialized in popular culture, such as in XKCD’s comic

tribute [1]:

Figure 1.1: XKCD comic #695: A tribute to Spirit, highlighting the emotional weight and
technical challenge of navigating granular terrain [1].
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Though humorous in style, the comic conveys a sense of quiet tragedy. It conveys the

undeniable truth: our robotic explorers are vulnerable to many hazards when faced with

environments they cannot fully perceive or understand.

Moreover, granular terrains are dynamic and can change significantly across distances.

Small disturbances, such as the pressure from a robot’s wheel or foot, can cause localized

deformation, slippage, or collapse. These changes often occur without any visual indica-

tion. Dust accumulation and variable lighting conditions, including low sun angles and deep

shadows, further complicate visual perception, making reliance on vision alone increasingly

dangerous.

Recognizing these challenges, a new paradigm for planetary exploration is necessary, one

that moves beyond passive observation to active physical interrogation of the environment.

NASA’s Legged Autonomous Surface Science In Analogue Environments (LASSIE) project

[2] embodies this approach. Instead of simply observing, legged robots interact with the

terrain, using their limbs not only for locomotion but also as scientific instruments capable

of performing mechanical tests.

Legged robots offer a unique advantage for such interactions. Every step becomes an

opportunity to measure the mechanical response of the terrain. By pressing into the surface,

applying controlled forces, and recording the resulting displacements, these robots can infer

properties such as stiffness, cohesion, and internal friction. Unlike visual sensing, which de-

pends on interpreting surface features, proprioceptive sensing provides direct measurements

of terrain characteristics critical to safe navigation and environmental understanding.

The LASSIE project’s quadrupedal platforms, such as the Ghost Robotics Spirit shown

in Figure 1.2, are equipped with actuators capable of precise force control. These robots

systematically perform mechanical measurements during locomotion, continuously gathering

data about the terrain they traverse.

As shown in Figure 1.3, each step provides new information about terrain stiffness and

stability. These measurements not only ensure the safety of the robot’s immediate move-
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Figure 1.2: Ghost Robotics Spirit, the quadrupedal robot used in LASSIE experiments on
Mount Hood.

Figure 1.3: A LASSIE quadrupedal robot recording terrain stiffness during each step.
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ments but also build a continuously updated map of the environment. Over time, the robot

constructs a detailed understanding of the traversability and mechanical behavior of the

landscape.

Several challenges remain in leveraging proprioceptive sensing for autonomous navigation.

Most existing navigation algorithms are designed with the assumption that the robot has

access to either global terrain maps or rich local sensing from sources such as LIDAR or

cameras. These sensors provide spatial context beyond the robot’s current location, allowing

planners to construct paths based on look-ahead information. In contrast, proprioceptive

sensing is inherently localized. The robot receives information only at the exact point of

contact with the terrain, with no visibility into the safety of neighboring or distant regions.

This limitation introduces several technical challenges:

1. Sparse and Delayed Observability: Because the robot can only sense terrain after

physically interacting with it, the environment must be discovered incrementally and

cautiously.

2. Uncertainty in Terrain Modeling: Local measurements are subject to noise and

variability, making it difficult to construct a reliable global map of terrain safety.

3. Balancing Exploration and Exploitation: The robot must decide whether to

explore unknown regions to reduce uncertainty or exploit known safe areas to reach

the goal, while maintaining a margin of safety.

4. Real-Time Decision Making: Planning must occur under strict time constraints

and be continuously updated in response to new measurements.

5. Safety Guarantees with Minimal Lookahead: Without visibility into terrain

ahead, the robot must ensure safety using only current and past measurements.

This thesis builds upon the LASSIE exploration loop by introducing a navigation strat-

egy called Safe Reactive Planning for Granular Terrain (SRPGT) that places propriocep-
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tive sensing at the core of the robot’s decision-making process. SRPGT enables the robot

to use each proprioceptive measurement to inform both its immediate path planning and

its broader exploration objectives. Specifically, SRPGT generates safe, dynamically updated

paths based on local terrain measurements, while also selecting optimal locations for conduct-

ing further mechanical tests. Through this active exploration loop, the robot incrementally

expands its map of traversable terrain while minimizing risk.

Through the integration of proprioceptive measurements and adaptive navigation, this

research aims to transform the process of planetary exploration from a passive visual survey

to an active, resilient, and intelligent engagement with the environment. Such capabilities are

not technological conveniences but essential requirements for building a sustainable human

presence beyond Earth.

The remainder of this thesis is organized as follows. Chapter 2 provides a literature

review of related work in autonomous navigation. Chapter 3 details the proposed method-

ology, including the design of the SRPGT framework and its integration into the LASSIE

exploration loop. Chapter 4 presents the simulation setup and interprets simulation results.

Finally, Chapter 5 analyzes limitations of SRPGT, and outlines opportunities for future

research.
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Chapter 2

Literature Review

Autonomous navigation in unknown, unstructured environments poses a complex challenge,

especially when sensing is limited to proprioceptive input and the terrain is composed of

granular material that can deform unexpectedly underfoot. In such settings, traditional

visual mapping approaches often fail, and the robot must rely entirely on local interaction

to evaluate risk and plan its movement. Addressing this problem requires methods that

can reason under uncertainty, ensure safety without full knowledge of the environment, and

adapt motion in real time based on new evidence.

This chapter reviews two key areas of related work that inform the development of

SRPGT. The first involves Bayesian optimization and Gaussian Process-based modeling

to handle uncertainty and guide safe exploration. The second includes reactive control

strategies, particularly those based on Voronoi and power diagram constructions, which en-

able real-time, geometry-aware navigation in partially known or dynamic spaces. These

approaches together form the conceptual backbone of SRPGT, though the system departs

from prior work by operating entirely on proprioceptive sensing in visually degraded envi-

ronments.
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2.1 Bayesian Optimization and Gaussian Processes in

Navigation

Bayesian optimization techniques have become powerful tools for exploration under uncer-

tainty. They use statistical models—typically Gaussian Processes (GPs)—to approximate

unknown functions and select informative or optimal sampling points. In robotic naviga-

tion, this framework allows the robot to learn about the environment while avoiding unsafe

terrain.

Muenprasitivej et al. [3] employ GPs to model terrain elevation and uncertainty for

bipedal robots. Their method integrates footstep planning with information gain objectives,

enabling safe exploration even in unstable regions. This work highlights how GP-based mod-

els can unify terrain understanding with locomotion constraints, but it assumes exteroceptive

input such as elevation maps.

Uttsha et al. [4] generalize this idea by creating GP-based distance fields from 3D point

clouds. Their system constructs smooth elevation and obstacle maps that support plan-

ning for legged and wheeled robots. The result is a flexible, continuous representation of

traversability that allows robust trajectory optimization in uneven terrain. This framework,

however, requires point cloud sensing, which may not be feasible in degraded visual condi-

tions.

Leininger et al. [5] extend these ideas using Sparse GPs to build terrain cost maps and

steer an RRT* planner. Their approach selects subgoals along the frontier to guide the

robot while minimizing exposure to uncertain regions. However, it relies on global terrain

observations and sampling-based planning, which can be computationally expensive and

poorly suited to real-time reactivity.

All of these methods demonstrate the power of GPs for terrain-aware planning, but most

require exteroceptive sensors and rely on offline or batch planning. In contrast, SRPGT

uses proprioceptive data only, incrementally building a risk model in real time and making
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decisions at the resolution of physical contact.

2.1.1 Gaussian Process Upper Confidence Bound (GP-UCB)

The GP-UCB algorithm provides a principled approach for choosing sampling points when

both uncertainty and performance must be considered. It selects the next query location x

by maximizing:

aUCB(x) = µn−1(x) + β σn−1(x)

where µ and σ represent the GP’s posterior mean and uncertainty, and β scales the confidence

margin. This algorithm efficiently balances exploration (uncertain points) and exploitation

(high-performing predictions).

In SRPGT, a similar confidence-aware sampling strategy is used, but applied spatially

to terrain traversal. Instead of seeking optima, the goal is to incrementally grow a certified

safe set based on proprioceptive risk estimates.

2.1.2 Safe Bayesian Optimization (SafeOpt)

SafeOpt builds on GP-UCB by enforcing that each function evaluation satisfy a minimum

safety constraint:

f(x) ≥ h

with high probability. It maintains and expands a set of safe decisions while seeking high

performance, avoiding evaluations in dangerous regions.

SRPGT adapts this paradigm to navigation by only sampling locations where terrain

risk is predicted to fall below a safety threshold. While not a direct implementation of

SafeOpt, the core idea of conservative, uncertainty-aware expansion is central to its planning

mechanism.
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2.2 Reactive Navigation Using Voronoi-Based Meth-

ods

Whereas GP-based methods focus on estimating terrain and selecting strategic waypoints, re-

active navigation methods address a complementary need: executing safe, collision-avoiding

motion in real time as new obstacles are discovered.

2.2.1 Navigation in Convex Worlds

Arslan and Koditschek [6] propose a method that uses power diagrams to define convex,

obstacle-free regions around the robot. Within these regions, a local optimization strategy

guides the robot toward its goal. The method guarantees convergence from almost all starting

positions and is highly efficient due to its geometric construction.

Arslan and Koditschek [7] extend this framework to unknown environments by using local

sensing to infer separating hyperplanes and construct reactive control fields. Their system

allows real-time motion in cluttered spaces using only local information.

These methods inspire the reactive control layer in SRPGT. By constructing convex

approximations of safe space based on proprioceptive estimates rather than direct obstacle

detection, SRPGT achieves comparable responsiveness using internal sensing alone.

2.2.2 Navigation in Concave and Partially Known Worlds

Vasilopoulos et al. [8] combine semantic SLAM with reactive control to navigate through

cluttered, dynamic environments. Their robot adjusts its plan in real time based on object

detection and scene understanding, enabling smooth motion even in rapidly changing spaces.

This work is extended in Vasilopoulos et al. [9], where robots use semantic labels to decide

whether to trust a prior map or act reactively. This hybrid strategy improves efficiency by

leveraging prior structure while maintaining responsiveness to new hazards.
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In contrast, SRPGT constructs hazard boundaries from terrain risk estimates, not visual

or semantic input. The use of proprioceptive sensing makes it viable in visually degraded

environments such as planetary surfaces, where dust, shadowing, or lack of light renders

cameras ineffective.

Figure 2.1: Exact robot navigation using power diagrams, generated by disks representing
obstacles (black) and the robot (red at the goal). The power cell (yellow) associated with
the robot defines its obstacle free convex local neighborhood, and the continuous feedback
motion towards the metric projection of a given desired goal (red) onto this convex set
asymptotically steers almost all robot configurations (green) to the goal without collisions
along the way. The grey regions represent the augmented workspace boundary and obstacles,
and the arrows show the direction of the resulting vector field. [6]

2.2.3 Other Voronoi-Based Techniques

Garrido and Moreno [10] use Voronoi diagrams with the Fast Marching Method to compute

paths with maximal clearance in real time. Their technique supports continuous updates as

new obstacles are sensed, reinforcing the need for responsiveness in dynamic settings.

SRPGT shares this emphasis on responsiveness, but relies on inferred terrain risk to shape

its navigation domain, rather than explicit obstacle maps. The underlying philosophy—a

robot should move cautiously through space while dynamically updating its understanding

of nearby hazards—is closely aligned.
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2.3 Summary and Motivation for This Work

Prior work in terrain-aware navigation has demonstrated the power of both probabilistic

modeling and reactive control. Gaussian Processes enable safe and data-efficient exploration

by modeling uncertainty, while Voronoi-based planners enable fast, obstacle-avoiding mo-

tion with minimal computation. However, these approaches have typically been applied in

isolation, or require vision or global maps to function effectively.

SRPGT integrates the most compelling aspects of these two paradigms: it uses confidence-

guided expansion of safe terrain based on proprioceptive input, and it executes motion in

real time using a reactive controller adapted from power diagram-based methods. This

combination enables the robot to safely explore deformable granular terrain with no visual

information, no global map, and no need for complete re-planning in response to environ-

mental change.

In doing so, this work contributes a unified navigation architecture that is both safe and

adaptive, capable of expanding its operational zone and navigating within it using only what

the robot feels through its limbs.
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Chapter 3

Methods

Exploration on granular planetary terrain is a task marked by uncertainty, variability, and

risk. Unlike rigid or structured environments where surface characteristics are relatively

predictable, granular media such as regolith can shift suddenly under pressure. These shifts

often occur without any visual cues. A successful navigation algorithm must not only plan

paths toward a goal but must also adapt its behavior in real time based on what the robot

learns through physical interaction.

This chapter presents the complete method developed to address these challenges. The

system combines safe Bayesian global planning with geometry-based local control. The

fundamental idea is that a legged robot, through proprioceptive interaction, can actively

map the terrain’s mechanical properties, update its internal risk estimates, and select both

where to go and how to get there, while maintaining operational safety and supporting

scientific objectives.

3.1 Terrain-Aware Navigation as a Sequential Decision

Problem

Legged robots are uniquely suited to granular terrain because their limbs can serve two func-

tions: enabling mobility and acting as embedded sensors. Each step provides an opportunity
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for measurement and becomes an input to an evolving internal model of terrain risk.

Navigation in this context can be treated as a sequential decision-making process under

uncertainty. The robot must choose its next move based on local terrain observations,

estimated risks, and proximity to the goal, while ensuring that all movement adheres to

strict safety constraints. This challenge is met by combining two core components:

1. A probabilistic planner that incrementally expands a certified safe set of traversable

terrain using terrain observations and confidence-based reasoning.

2. A reactive controller based on diffeomorphic transformation that enables real-time,

geometry-aware path execution within certified safe regions.

3.2 Problem Statement

The robot operates within a two-dimensional discretized domain D ⊂ R2, where each

point has an unknown terrain property, such as shear strength or cohesion, that influences

traversability. The objective is to move from an initial location x0 to a goal location xg,

ensuring that all intermediate positions lie within regions classified as safely traversable.

We define f(x) as a scalar-valued function representing the traversability of terrain at

location x, where higher values correspond to more easily traversable regions. This function

is treated abstractly and may encode various underlying physical or empirical terrain char-

acteristics depending on the application context. A fixed threshold h is used to determine

safety: terrain is considered safe if f(x) ≥ h, and unsafe if f(x) < h. The values of f(x)

and h are not assumed to carry physical units or universal semantics; rather, they serve as

internally consistent constructs for distinguishing safe and unsafe terrain within the chosen

representation framework.

Key assumptions and constraints are as follows:

• Terrain risk is a continuous but unknown function over space.
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• Proprioceptive terrain measurements are available only at the robot’s current location.

• Navigation must maintain high-confidence safety guarantees at all times.

3.3 Confidence-Guided Terrain Expansion

The planner maintains a probabilistic model of terrain risk using a Gaussian Process (GP).

At each step, it updates terrain predictions and refines a subset of the environment certified

as safe.

This method draws inspiration from prior work on safe exploration algorithms such as

SafeOPT and SafeUCB [11, 12], but differs in structure and execution. In particular, the

focus of this work is not on maximizing a reward function, but on expanding reachable

terrain while ensuring probabilistic safety at every decision point.

3.3.1 Gaussian Process Terrain Modeling

The robot uses proprioceptive data to train a Gaussian Process (GP) model over D, pro-

ducing a mean prediction µt(x) and standard deviation σt(x) at each location x ∈ D. The

GP uses a radial basis function (RBF) kernel:

k(x, x′) = σ2 exp

(
−∥x− x′∥2

2ℓ2

)

where σ2 is the kernel variance and ℓ is the lengthscale, both selected manually based on

the expected variability of the proprioceptive signal. These hyperparameters are fixed at

deployment time.

The model is updated recursively using all past measurements for computational effi-

ciency. At each step, the robot collects a new proprioceptive terrain measurement yt at

position xt, then incorporates this into the GP model to update posterior predictions across

the domain.
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3.3.2 Safe Set Expansion

A fixed exploration parameter βt is used to control the width of confidence intervals:

Qt(x) =
[
µt−1(x)±

√
βt σt−1(x)

]
(3.1)

This formulation is adapted from the SafeOPT algorithm introduced by Sui et al. [11],

where confidence intervals are used to balance safety with informative sampling. The value

of βt should be chosen via empirical tuning to balance conservative exploration with steady

progress.

The resulting confidence bounds are intersected with prior confidence sets to form up-

dated constraints:

Ct(x) = Ct−1(x) ∩Qt−1(x) (3.2)

From these sets, the lower and upper bounds are defined as:

ℓt(x) = minCt(x), ut(x) = maxCt(x) (3.3)

and the interval width is computed as:

wt(x) = ut(x)− ℓt(x) (3.4)
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Algorithm 1 Safe Optimization for 2D Navigation

Require: Sample set D, GP prior (µ0, k, σ0), Lipschitz constant L, seed set S0, safety
threshold h, goal location xg, number of expanders to consider n

1: C0(x)← [h,∞), ∀x ∈ S0

2: C0(x)← R, ∀x ∈ D \ S0

3: Q0(x)← R, ∀x ∈ D
4: for each time step t = 1, 2, . . . do
5: Ct(x)← Ct−1(x) ∩Qt−1(x)
6: St ←

⋃
x∈St−1

{
x′ ∈ D

∣∣ ℓt(x)− L∥x− x′∥ ≥ h
}

7: Gt ←
{
x ∈ St

∣∣ gt(x) > 0
}

8: Sort Gt by ∥x− xg∥ in ascending order

9: Let G
(n)
t ⊆ Gt be the top n nearest expanders

10: xt ← argmax
x∈G(n)

t
wt(x)

11: Observe yt = f(xt) + nt

12: Compute Qt(x) for all x ∈ St

13: end for

To identify Gt, the function

gt(x) =
∣∣∣{x′ ∈ D \ St

∣∣ut(x)− L∥x− x′∥ ≥ h
}∣∣∣ (3.5)

is defined, evaluating the expansion potential of each point.

This strategy combines uncertainty-driven sampling with spatial prioritization to ensure

that each move both refines the terrain model and progresses toward the mission objective.

The robot selects the next point to sample by balancing two objectives:

• Reducing model uncertainty (exploration)

• Making progress toward the mission goal (exploitation)

After constructing the safe set St and identifying the candidate expanders Gt ⊆ St, the

robot must select the next point at which to sample terrain. Rather than choosing purely

based on uncertainty or purely based on proximity to the goal, SRPGT employs a hybrid

strategy to guide exploration in a goal-directed yet uncertainty-aware manner.
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3.3.2.1 Next Parameter Selection

The new selection procedure is as follows:

1. For each point x ∈ Gt, compute its distance to the goal ∥x− xg∥.

2. Sort all points in Gt in ascending order of distance to the goal.

3. Consider only the top n nearest expanders, where n is a configurable parameter.

4. Among these n expanders, select the point with the largest confidence interval width

wt(x).

This approach prioritizes expanders that are spatially aligned with the mission objective

while still favoring those that offer informative terrain data. It mitigates the risk of wasting

samples on irrelevant or backward directions and prevents purely greedy selection based on

proximity alone, which might lead into regions of high uncertainty without expanding the

safe set.

By focusing on a small subset of candidate expanders that are both near the goal and

informative, the planner ensures steady, efficient progress toward the goal while incrementally

enlarging the verified safe zone.

3.4 Reactive Voronoi-Based Navigation

While the planner identifies the next point to move toward, executing safe and efficient

motion between steps requires a robust local navigation strategy. Classical global planners,

such as A* and RRT*, require full replanning after significant environmental updates, making

them unsuitable for highly dynamic, partially known terrains.

Instead, a reactive control framework inspired by Vasilopoulos et al. [9] is implemented.
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3.4.1 Synthesizing Pseudo-Physical Obstacles

To support reactive navigation, the robot must construct geometric representations of both

safe and hazardous terrain regions from its evolving internal risk map. This process trans-

forms pointwise risk predictions into polygonal approximations of safe space and its comple-

ment, enabling geometry-aware motion planning.

The environment is discretized into a two-dimensional grid. In simulation, this grid is

aligned with the resolution of the ground truth map for consistency. In real-world deploy-

ments, however, the resolution becomes a tunable parameter. Higher resolutions enable more

detailed boundary tracking but increase computational overhead, while lower resolutions re-

duce map fidelity in favor of speed and memory efficiency.

The conversion from safe points to obstacle geometry proceeds as follows:

1. Cluster Formation: The current safe set St is partitioned into disjoint spatial clus-

ters {Sti} using a combination of KD-tree nearest-neighbor queries and union-find

data structures. Each cluster represents a contiguous region of confidently traversable

terrain.

2. Concave Hull Construction: For each cluster Sti, a concave hull Hti is generated

using the algorithm described by Park and Oh [13], which takes as parameters a rel-

ative concavity level C and a local threshold Lth. These settings determine the hull’s

shape resolution and computational complexity. In our implementation, we select high

concavity values to tightly wrap each cluster. While these parameters influence geo-

metric fidelity, they do not affect overall safety guarantees and may be tuned based on

application requirements.

3. Workspace Definition: A bounding rectangleWe is formed to enclose allHti regions:

We :=

{
x ∈ R2

∣∣∣∣min
i

H
(1)
ti ≤ x1 ≤ max

i
H

(1)
ti , min

i
H

(2)
ti ≤ x2 ≤ max

i
H

(2)
ti

}
(3.6)
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Figure 3.1: Visualization of a concave hull generated from point clusters. Image adapted
from the cubao/concave hull GitHub repository [14]. Licensed under the MIT License.

Figure 3.2: Visualization of bounding box creation. Green dots are fictional locations of safe
samples, inner shape is depiction of safe area.

4. Obstacle Extraction: The regions not covered by the union of safe hulls are treated

as pseudo-physical obstacles:

Ot :=We \
⋃
i

Hti (3.7)

5. Polygon Simplification: The obstacle set Ot is polygonal by construction but may

contain excessive vertices. Each obstacle polygon is simplified using the Douglas-

Peucker algorithm to reduce computational cost while preserving topology for subse-
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quent triangulation and transformation.

The resulting polygon set Ot is used by the reactive controller to generate safe, smooth

navigation commands around terrain hazards that have been inferred from contact-based

measurements.

3.4.2 Diffeomorphic Mapping and Reactive Control

To enable real-time obstacle-aware motion without full replanning, we adopt a reactive nav-

igation framework based on the approach proposed by Vasilopoulos et al. [9]. Their method

provides a systematic means to guarantee obstacle avoidance and goal convergence in planar

environments with polygonal obstacles, by leveraging a diffeomorphic transformation to map

the physical space into a geometrically simplified model space.

We implement the core structure of their controller and adapt it to operate on pseudo-

physical obstacles derived from proprioceptive terrain assessments. The application of this

method in our context is novel, particularly in how the safe terrain regions are estimated

and transformed dynamically based on risk-driven sampling.

Each polygon in the obstacle set Ot is first triangulated using the Ear Clipping method

[15]. The resulting set of triangles is organized into a tree structure, where leaf triangles

are recursively mapped onto their parents, and the root triangle is ultimately mapped onto

a disk. This hierarchical transformation process defines a global diffeomorphism h(x) from

the original workspace to a simplified model space free of obstacles.
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x3ri
<latexit sha1_base64="PwBxa9v8mTEkEpIceT6PdTOzZNM=">AAAB+nicbVC7TsMwFHXKq5RXCiOL1QqJqUraAcYKFsYi0YfURJHjOq1Vx4lsB6hCPoAvYGJhACFW/oA/YEH8DU7bAVqOZOnonHt1j48fMyqVZX0bhZXVtfWN4mZpa3tnd88s73dklAhM2jhikej5SBJGOWkrqhjpxYKg0Gek64/Pc797TYSkEb9Sk5i4IRpyGlCMlJY8s+yESI38IL3NvLQhPJp5ZtWqWVPAZWLPSbVZcSr3Dx9fLc/8dAYRTkLCFWZIyr5txcpNkVAUM5KVnESSGOExGpK+phyFRLrpNHoGj7QygEEk9OMKTtXfGykKpZyEvp7Mg8pFLxf/8/qJCk7dlPI4UYTj2aEgYVBFMO8BDqggWLGJJggLqrNCPEICYaXbKukS7MUvL5NOvWY3avVL3cYZmKEIDkEFHAMbnIAmuAAt0AYY3IBH8AxejDvjyXg13majBWO+cwD+wHj/AaP9l/E=</latexit>

Qri
<latexit sha1_base64="xdrou8cnbgs/HqiJw89BqdGiopQ=">AAAB+nicdVDLSgMxFM3UV62vVpduQovgashUqu2u6MZlC/YBnWHIpJk2NPMgyShl7Af4Ba7cuFDErX/gH7gR/8b0IajogcDhnHu5J8eLOZMKoQ8js7S8srqWXc9tbG5t7+QLu20ZJYLQFol4JLoelpSzkLYUU5x2Y0Fx4HHa8UZnU79zSYVkUXihxjF1AjwImc8IVlpy8wU7wGpIME+bEzcVLpu4+RIyyxVUqyKITDSDJhVk1Y4taC2UUr1oF29uX98bbv7N7kckCWioCMdS9iwUKyfFQjHC6SRnJ5LGmIzwgPY0DXFApZPOok/ggVb60I+EfqGCM/X7RooDKceBpyenQeVvbyr+5fUS5VedlIVxomhI5of8hEMVwWkPsM8EJYqPNcFEMJ0VkiEWmCjdVk6X8PVT+D9pl03ryCw3dRunYI4s2AdFcAgscALq4Bw0QAsQcAXuwAN4NK6Ne+PJeJ6PZozFzh74AePlE/tRmC0=</latexit>

Qri
<latexit sha1_base64="Oz0lur7/RpcbWT/9vhn9nw/nm6c="></latexit>

(2a)

x2ji
<latexit sha1_base64="ZIz2N8V0gLbzMmd4544zr2jxApQ=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom1WuXpq5ZtirWBHCR2DNSrh18vb2Pit911/zo9kIcB4QrzJCUHduKlJMgoShmJC10Y0kihIeoTzqachQQ6SST6Ck81EoP+qHQjys4UX9vJCiQchx4ejILKue9TPzP68TKP3USyqNYEY6nh/yYQRXCrAfYo4JgxcaaICyozgrxAAmElW6roEuw57+8SJrVin1cqV7qNs7AFHmwB/bBEbDBCaiBC1AHDYDBDbgHj+DJuDMejGfjZTqaM2Y7u+APjNcfhHSYlw==</latexit>

x1ji
<latexit sha1_base64="DXOL3ruKHLmWuGjR08WBBtVECwE=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom9rVLU9csWxVrArhI7Bkp1w6+3t5Hxe+6a350eyGOA8IVZkjKjm1FykmQUBQzkha6sSQRwkPUJx1NOQqIdJJJ9BQeaqUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSrdV0CXY819eJM1qxT6uVC91G2dgijzYA/vgCNjgBNTABaiDBsDgBtyDR/Bk3BkPxrPxMh3NGbOdXfAHxusPguyYlg==</latexit>

x3ji
<latexit sha1_base64="n6OGByStWBiD/0T3rdvmrv5iCTk=">AAAB+nicbVC7TsMwFHV4lpZHCiOLRUFiqpJ2gLGChbFI9CG1UeS4TmvqOJHtFKqQT2FhACFWxA/wB2x8CMw4bQdoOZKlo3Pu1T0+XsSoVJb1aSwtr6yurec28oXNre0ds7jblGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3PM/81ogISUN+pcYRcQLU59SnGCktuWaxGyA18PzkNnWT6rVLU9csWWVrArhI7Bkp1Q6/3t5Hhe+6a350eyGOA8IVZkjKjm1FykmQUBQzkua7sSQRwkPUJx1NOQqIdJJJ9BQeaaUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSreV1yXY819eJM1K2a6WK5e6jTMwRQ7sgwNwDGxwAmrgAtRBA2BwA+7BI3gy7owH49l4mY4uGbOdPfAHxusPhfyYmA==</latexit>

H1ji
<latexit sha1_base64="ROBeR4cXtMe937tYmw2cAuT7N08=">AAAB73icdVDLSgMxFM34rK2Pqks3wSq4GjIdau2u6KbLCvYB7TBk0kwbm3mYZApl6E+4caGIW3/AH/AP3PkhujZtFVT0wIXDOfdy7z1ezJlUCL0aC4tLyyurmbVsbn1jcyu/vdOUUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94NvVbIyoki8ILNY6pE+B+yHxGsNJSu+am1qXLJm6+gMwSsiqlMkRmRePY1gTZFrIr0DLRDIXqwdvT8yj3XnfzL91eRJKAhopwLGXHQrFyUiwUI5xOst1E0hiTIe7TjqYhDqh00tm9E3iolR70I6ErVHCmfp9IcSDlOPB0Z4DVQP72puJfXidR/omTsjBOFA3JfJGfcKgiOH0e9pigRPGxJpgIpm+FZIAFJkpHlNUhfH0K/yfNomnZZvFcp3EK5siAPbAPjoAFyqAKaqAOGoAADq7BLbgzrowb4954mLcuGJ8zu+AHjMcPDq2UbQ==</latexit>

H2ji
<latexit sha1_base64="Y+gGJ24sTPGFmHUXIkFkwJhyKDo=">AAAB73icdVDLSgMxFM34rK2Pqks3wSq4GjIdau2u6KbLCvYB7TBk0kwbm3mYZApl6E+4caGIW3/AH/AP3PkhujZtFVT0wIXDOfdy7z1ezJlUCL0aC4tLyyurmbVsbn1jcyu/vdOUUSIIbZCIR6LtYUk5C2lDMcVpOxYUBx6nLW94NvVbIyoki8ILNY6pE+B+yHxGsNJSu+amxUuXTdx8AZklZFVKZYjMisaxrQmyLWRXoGWiGQrVg7en51Huve7mX7q9iCQBDRXhWMqOhWLlpFgoRjidZLuJpDEmQ9ynHU1DHFDppLN7J/BQKz3oR0JXqOBM/T6R4kDKceDpzgCrgfztTcW/vE6i/BMnZWGcKBqS+SI/4VBFcPo87DFBieJjTTARTN8KyQALTJSOKKtD+PoU/k+aRdOyzeK5TuMUzJEBe2AfHAELlEEV1EAdNAABHFyDW3BnXBk3xr3xMG9dMD5ndsEPGI8fEDWUbg==</latexit>

Qji
<latexit sha1_base64="4zycPbFRagzjUWd0gbLf7UKjq9o=">AAAB+nicdVDLTgIxFO34RPAx6NJNI5q4Ih0MCjuiG5eQyCMBMumUApXOI20HQ8b5FDcuNMat8Qf8A3d+iK7tACZq9CRNTs65N/f0OAFnUiH0ZiwsLi2vrKbW0pn1jc0tM7vdkH4oCK0Tn/ui5WBJOfNoXTHFaSsQFLsOp01ndJb4zTEVkvnehZoEtOvigcf6jGClJdvMdlyshgTzqBbb0aXNYtvMoXyhiMolBFEeTaFJEVnlYwtacyVX2X9/fhlnPqq2+drp+SR0qacIx1K2LRSoboSFYoTTON0JJQ0wGeEBbWvqYZfKbjSNHsMDrfRg3xf6eQpO1e8bEXalnLiOnkyCyt9eIv7ltUPVL3Uj5gWhoh6ZHeqHHCofJj3AHhOUKD7RBBPBdFZIhlhgonRbaV3C10/h/6RRyFtH+UJNt3EKZkiBXbAHDoEFTkAFnIMqqAMCrsANuAP3xrVxazwYj7PRBWO+swN+wHj6BN1QmNQ=</latexit>

Qji
<latexit sha1_base64="t/R8nFR0Usz84KVJ4ofrzRNQXFM="></latexit>

ji
<latexit sha1_base64="eqFwFTnaop1S05XFXdiw4/IpUFc=">AAAB6nicbVC7SgNBFL0bXzG+opaKDAbBKuzGQsugjWWC5gHJEmYns8nozOwyMyuEJaWljYUitn5EvsPOb/AnnDwKTTxw4XDOvdx7TxBzpo3rfjmZpeWV1bXsem5jc2t7J7+7V9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjuL8a+40HqjSL5K0ZxNQXuCdZyAg2Vrq567BOvuAW3QnQIvFmpFA+HFW/H49GlU7+s92NSCKoNIRjrVueGxs/xcowwukw1040jTG5xz3aslRiQbWfTk4dohOrdFEYKVvSoIn6eyLFQuuBCGynwKav572x+J/XSkx44adMxomhkkwXhQlHJkLjv1GXKUoMH1iCiWL2VkT6WGFibDo5G4I3//IiqZeK3lmxVLVpXMIUWTiAYzgFD86hDNdQgRoQ6METvMCrw51n5815n7ZmnNnMPvyB8/EDOYmRdQ==</latexit>

p(ji)
<latexit sha1_base64="zk1YshdGfU9ZDmzjHvvxxvRNb2w=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdeNBj0IvHCOYByRJmJ7PJJLMzy8ysEJb8gwc9KOLV//GWv3HyOGhiQUNR1U13VxBzpo3rTp3MxubW9k52N7e3f3B4lD8+aWiZKELrRHKpWgHWlDNB64YZTluxojgKOG0Go7uZ33yiSjMpHs04pn6E+4KFjGBjpUZcGnbZRTdfdMvuHGideEtSrBY6ly/T6rjWzX93epIkERWGcKx123Nj46dYGUY4neQ6iaYxJiPcp21LBY6o9tP5tRN0bpUeCqWyJQyaq78nUhxpPY4C2xlhM9Cr3kz8z2snJrzxUybixFBBFovChCMj0ex11GOKEsPHlmCimL0VkQFWmBgbUM6G4K2+vE4albJ3Va482DRuYYEsnEEBSuDBNVThHmpQBwJDeIY3eHek8+p8OJ+L1oyznDmFP3C+fgD+hpG4</latexit>

nji
<latexit sha1_base64="SXY3MLNAYZVzi0jFS/5AUOpu+Yk=">AAAB+XicdVDLSgMxFM3UV219jLp0E6yCqzIzLW3dFd24rGAf0JYhk2ba2ExmSDKFMvRP3LhQxK3gD/gH7vwQXZtpFVT0QOBwzr3ck+NFjEplWa9GZml5ZXUtu57Lb2xubZs7uy0ZxgKTJg5ZKDoekoRRTpqKKkY6kSAo8Bhpe+Oz1G9PiJA05JdqGpF+gIac+hQjpSXXNHsBUiPPT/jMTa5cOnPNglU8qVWccgVaRcuq2o6dEqdaLpWhrZUUhfrh29PzJP/ecM2X3iDEcUC4wgxJ2bWtSPUTJBTFjMxyvViSCOExGpKuphwFRPaTefIZPNLKAPqh0I8rOFe/byQokHIaeHoyzSl/e6n4l9eNlV/rJ5RHsSIcLw75MYMqhGkNcEAFwYpNNUFYUJ0V4hESCCtdVk6X8PVT+D9pOUW7VHQudBunYIEs2AcH4BjYoArq4Bw0QBNgMAHX4BbcGYlxY9wbD4vRjPG5swd+wHj8AF5MmJM=</latexit>

x⇤
ji

<latexit sha1_base64="aF8Wk7/G60mYg6wxeyOWqzWLUsc=">AAAB+3icdVDLSgMxFM3UV62vsS7dBIsgCmVmWtq6K7pxWcE+oK1DJs20sZkHSUZahvkC/8GNgiJu/RF3foh7M62Cih4IHM65l3tynJBRIQ3jTcssLC4tr2RXc2vrG5tb+na+JYKIY9LEAQt4x0GCMOqTpqSSkU7ICfIcRtrO+DT129eECxr4F3Iakr6Hhj51KUZSSbae73lIjhw3niR2fGXT5PLQ1gtG8bhWscoVaBQNo2paZkqsarlUhqZSUhTqR+/3N6QQNmz9tTcIcOQRX2KGhOiaRij7MeKSYkaSXC8SJER4jIakq6iPPCL68Sx7AveVMoBuwNXzJZyp3zdi5Akx9Rw1mSYVv71U/MvrRtKt9WPqh5EkPp4fciMGZQDTIuCAcoIlmyqCMKcqK8QjxBGWqq6cKuHrp/B/0rKKZqlonas2TsAcWbAL9sABMEEV1MEZaIAmwGACbsEDeNQS7U570p7noxntc2cH/ID28gGQ0Jh3</latexit>

x⇤
i

<latexit sha1_base64="3Oral/zpT58sLtDeaSAn2FBr5+w=">AAAB9XicdVDLSsNAFJ3UV62vqks3g0UQFyFJQ1t3RTcuK9gHtGmZTCft0MkkzEzUEvofblwo4tZ/ceffOGkrqOiBgcM593LPHD9mVCrL+jByK6tr6xv5zcLW9s7uXnH/oCWjRGDSxBGLRMdHkjDKSVNRxUgnFgSFPiNtf3KZ+e1bIiSN+I2axsQL0YjTgGKktNTvhUiN/SC9nw1o/2xQLFnmea3iuBVomZZVtR07I07VLbvQ1kqGEliiMSi+94YRTkLCFWZIyq5txcpLkVAUMzIr9BJJYoQnaES6mnIUEuml89QzeKKVIQwioR9XcK5+30hRKOU09PVkllL+9jLxL6+bqKDmpZTHiSIcLw4FCYMqglkFcEgFwYpNNUFYUJ0V4jESCCtdVEGX8PVT+D9pOaZdNp1rt1S/WNaRB0fgGJwCG1RBHVyBBmgCDAR4AE/g2bgzHo0X43UxmjOWO4fgB4y3TwM7kto=</latexit>

Qri
<latexit sha1_base64="Oz0lur7/RpcbWT/9vhn9nw/nm6c="></latexit>

Qri
<latexit sha1_base64="xdrou8cnbgs/HqiJw89BqdGiopQ=">AAAB+nicdVDLSgMxFM3UV62vVpduQovgashUqu2u6MZlC/YBnWHIpJk2NPMgyShl7Af4Ba7cuFDErX/gH7gR/8b0IajogcDhnHu5J8eLOZMKoQ8js7S8srqWXc9tbG5t7+QLu20ZJYLQFol4JLoelpSzkLYUU5x2Y0Fx4HHa8UZnU79zSYVkUXihxjF1AjwImc8IVlpy8wU7wGpIME+bEzcVLpu4+RIyyxVUqyKITDSDJhVk1Y4taC2UUr1oF29uX98bbv7N7kckCWioCMdS9iwUKyfFQjHC6SRnJ5LGmIzwgPY0DXFApZPOok/ggVb60I+EfqGCM/X7RooDKceBpyenQeVvbyr+5fUS5VedlIVxomhI5of8hEMVwWkPsM8EJYqPNcFEMJ0VkiEWmCjdVk6X8PVT+D9pl03ryCw3dRunYI4s2AdFcAgscALq4Bw0QAsQcAXuwAN4NK6Ne+PJeJ6PZozFzh74AePlE/tRmC0=</latexit>

ri
<latexit sha1_base64="wctD4NccA2mT6dnqpkA0rL09Sfs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Uh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w83YpFz</latexit>

ri
<latexit sha1_base64="wctD4NccA2mT6dnqpkA0rL09Sfs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Uh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w83YpFz</latexit>

ri
<latexit sha1_base64="wctD4NccA2mT6dnqpkA0rL09Sfs=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Uh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w83YpFz</latexit>

x3ji
<latexit sha1_base64="n6OGByStWBiD/0T3rdvmrv5iCTk=">AAAB+nicbVC7TsMwFHV4lpZHCiOLRUFiqpJ2gLGChbFI9CG1UeS4TmvqOJHtFKqQT2FhACFWxA/wB2x8CMw4bQdoOZKlo3Pu1T0+XsSoVJb1aSwtr6yurec28oXNre0ds7jblGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3PM/81ogISUN+pcYRcQLU59SnGCktuWaxGyA18PzkNnWT6rVLU9csWWVrArhI7Bkp1Q6/3t5Hhe+6a350eyGOA8IVZkjKjm1FykmQUBQzkua7sSQRwkPUJx1NOQqIdJJJ9BQeaaUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSreV1yXY819eJM1K2a6WK5e6jTMwRQ7sgwNwDGxwAmrgAtRBA2BwA+7BI3gy7owH49l4mY4uGbOdPfAHxusPhfyYmA==</latexit>

x1ji
<latexit sha1_base64="DXOL3ruKHLmWuGjR08WBBtVECwE=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom9rVLU9csWxVrArhI7Bkp1w6+3t5Hxe+6a350eyGOA8IVZkjKjm1FykmQUBQzkha6sSQRwkPUJx1NOQqIdJJJ9BQeaqUH/VDoxxWcqL83EhRIOQ48PZkFlfNeJv7ndWLlnzoJ5VGsCMfTQ37MoAph1gPsUUGwYmNNEBZUZ4V4gATCSrdV0CXY819eJM1qxT6uVC91G2dgijzYA/vgCNjgBNTABaiDBsDgBtyDR/Bk3BkPxrPxMh3NGbOdXfAHxusPguyYlg==</latexit>

x2ji
<latexit sha1_base64="ZIz2N8V0gLbzMmd4544zr2jxApQ=">AAAB+nicbVC7TsMwFHXKq7Q8UhhZLAoSU5WUAcYKFsYi0YfURpHjOq2p40S2U6hCPoWFAYRYET/AH7DxITDjtB2g5UiWjs65V/f4eBGjUlnWp5FbWl5ZXcuvF4obm1vbZmmnKcNYYNLAIQtF20OSMMpJQ1HFSDsSBAUeIy1veJ75rRERkob8So0j4gSoz6lPMVJacs1SN0Bq4PnJbeom1WuXpq5ZtirWBHCR2DNSrh18vb2Pit911/zo9kIcB4QrzJCUHduKlJMgoShmJC10Y0kihIeoTzqachQQ6SST6Ck81EoP+qHQjys4UX9vJCiQchx4ejILKue9TPzP68TKP3USyqNYEY6nh/yYQRXCrAfYo4JgxcaaICyozgrxAAmElW6roEuw57+8SJrVin1cqV7qNs7AFHmwB/bBEbDBCaiBC1AHDYDBDbgHj+DJuDMejGfjZTqaM2Y7u+APjNcfhHSYlw==</latexit>
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Figure 3.3: Top row: (1a) A leaf triangle is mapped onto its parent triangle; (1b) A root
triangle is mapped onto a disk centered at xi with radius ρi. Bottom row: (2a) A leaf
triangle mapped onto its parent; (2b) A root triangle mapped onto the freespace border.
Figure reproduced from Vasilopoulos et al. [9].

In this transformed space, navigation reduces to a gradient-based controller that drives

the robot toward the goal projected into model space. The control law is defined by:

v(y) = −

y −
∏

LF(y)

(yd)

 (3.8)

where y = h(x) is the transformed robot position, yd = h(xd) is the transformed goal, and

ΠLF(y) denotes the projection operator onto the local Voronoi cell around y, denoted LF(y).

The corresponding control command in the original workspace is obtained by pulling

back the model space vector field through the inverse Jacobian of the diffeomorphism:

u(x) = k [Dxh]
−1 v(h(x)) (3.9)
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where k is a user-defined gain parameter. The gain is kept constant and empirically tuned

for the simulation, with the expectation that it would be adjusted in hardware based on

robot actuation limits.

To enforce feasibility within physical constraints, a fixed maximum velocity cap is applied

to u(x). This ensures that commanded motions remain within achievable limits, despite the

abstraction of full actuation in the control model. This assumption is reasonable for legged

robots such as quadrupeds, which can approximate omnidirectional planar motion using

whole-body control.

While the mathematical structure of the diffeomorphic mapping and control law is

adopted directly from Vasilopoulos et al. [9], its integration with a terrain risk-aware plan-

ning system and adaptation to proprioceptively inferred pseudo-obstacles represents a novel

application in this work.

3.5 System Integration

The final system integrates global terrain expansion and local reactive control into a unified

exploration loop:

• Proprioceptive measurements are gathered during motion.

• The GP-based model of terrain risk is updated after each measurement.

• The planner selects a new target location from safe or candidate expander sets.

• The reactive controller executes real-time movement toward the selected target.

This dual-loop architecture allows the robot to safely explore unknown, deformable en-

vironments while efficiently progressing toward its scientific objectives.
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Chapter 4

Results

This chapter presents simulation-based validation of SRPGT, designed to assess its perfor-

mance in a variety of terrain scenarios. The experiments evaluate SRPGT in a variety of

terrain scenarios that simulate challenges encountered during planetary exploration. These

scenarios are designed to demonstrate the algorithm’s core capabilities: its ability to ex-

pand safe regions under uncertainty, navigate around high-risk areas, reuse learned terrain

knowledge, and perform exploratory mapping without preassigned goals.

4.1 Evaluating the Navigation Framework

4.1.1 Validation Objectives and Contribution Scope

SRPGT fills a gap not currently addressed by existing navigation algorithms: it enables

proprioceptive, confidence-aware, reactive navigation in unknown, unstructured, and

deformable environments where visual sensing is unreliable or unavailable.

While prior work has addressed uncertainty in terrain modeling, safe exploration, or

reactive control in isolation, this framework integrates all three in a practical, simulation-

validated approach. Specifically, the method combines:

• Uncertainty-guided subgoal selection based on terrain risk predictions;

• Active expansion of a certified safe set;
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• Real-time navigation using diffeomorphic control in non-visual, proprioceptive settings.

This section presents simulation experiments designed to demonstrate these capabilities

and compare their effectiveness to relevant prior work. The most closely related work is

that of Leininger et al. [5], which combines Sparse Gaussian Processes with RRT*-based

planning, with which the differences with SRPGT are discussed in subsubsection 4.1.4.2

4.1.2 Simulated Planetary Terrain and Initialization

To execute SRPGT, it is assumed that a set of initial known safe points is available to form

the starting safe zone. In a real-world application, the robot would be physically placed

within a verified safe region and would take several initial steps around this area to collect

proprioceptive data, thereby building the initial terrain model. For simulation purposes,

the robot is initialized in a designated safe region, and a set of randomly sampled points

from a known safe region is used to initialize the Gaussian Process model, emulating initial

contact-based measurements.

The test environments are represented as two-dimensional grids, where each cell contains

a value corresponding to terrain properties such as risk or traversability. For simplicity,

the ground truth environment is discretized in simulation, as defining a discrete grid is

considerably more straightforward than specifying a continuous ground truth function. In

practical real-world applications, the underlying terrain properties are continuous; however,

they are discretized for computational purposes during processing and analysis.

For ease of implementation in simulation, the parameter set is defined as the collection

of all possible coordinate points within the discrete ground truth map. This representation

assumes that the discrete map provides the maximum available resolution of environmental

information.

Because the traversability function f(x) is only defined abstractly in the methods section,

a specific interpretation must be assigned when instantiating it for simulation. In these

experiments, f(x) is constructed as a scalar field encoding relative terrain strength according

25



to an internal definition. As a result, the safety threshold h used to distinguish between safe

and unsafe regions must also be selected empirically. Its role is not to enforce an externally

calibrated notion of safety, but rather to define relative risk boundaries under a particular

terrain encoding. Thresholds such as h = 1000 are chosen for demonstration purposes and

vary across scenarios to test different aspects of algorithm behavior.

With this simulation environment in place, the following scenarios were designed to eval-

uate distinct capabilities of SRPGT. Each experiment highlights a different navigation ob-

jective or environmental challenge relevant to planetary exploration.

4.1.3 Simulation Results

Figure 4.1: Visualization of ground truth risk values used in the following experiments,
starting at (230, 220), with a goal at (104, 82).

4.1.3.1 Visualization Legend

To aid in interpreting the following figures, we define the color scheme used to represent key

regions and elements within the navigation environment:

• White: Ground truth safe terrain (f(x) ≥ h)
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• Gray: Ground truth unsafe terrain (f(x) < h)

• Black: Pseudo-physical obstacles (Ot)

• Green: Local freespace (LF(x) eroded by robot radius)

• Light Blue: Safe set (St)

• Red: Expanders (Gt ⊆ St)

• Pink: Intermediate goal (selected xt ∈ Gt)

• Dark Blue: Final goal (xg)

This legend applies uniformly across all following figures in this chapter unless otherwise

noted.

4.1.3.2 General Navigation

This scenario shows the robot navigating in a scenario where the straight line path to the

goal does not contain any risk zones. The robot quickly expands the safe zone as shown in

Figure 4.2, reaching the point in 54 iterations.

4.1.3.3 Navigation Around a Risk Zone

In these scenarios, the robot must reach a designated goal point located beyond a high-risk

region. While the direct path to the goal intersects with terrain classified as unsafe according

to the risk estimation model, the robot successfully navigates around this obstacle.

Starting with a limited known safe region, the robot employs SRPGT to iteratively

expand its accessible area until reaching the goal point. Figure 4.3 and Figure 4.4 illustrate

this process through 9 frames captured at equal intervals throughout two navigation tasks.

The complete navigation path was generated after 210 and 461 planning iterations, where

each iteration includes one terrain measurement and safe set update. Initially, the robot
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Figure 4.2: Nine frames showing the progression of the simple navigation task at evenly
spaced intervals. Gray zones represent areas where traversability f(x) is less than 1000.

rapidly expands the explored safe zone until encountering regions approaching the risk thresh-

old. As the robot gets closer to the risk zone, the algorithm selects exploration points around

the periphery of the high-risk area, ensuring the robot maintains a safe distance from dan-

gerous terrain while progressing toward the goal. Then, when the robot passes the risk area,

each safe set expansion becomes much larger and less constrained, reaching the goal quickly.

A learned safe path can be reused in a subsequent navigation task, as can be seen in the

following test scenario.

4.1.3.4 Traversing Across Known Safe Area to Reach Opposite Side

This experiment demonstrates how the robot leverages previously acquired knowledge about

safe regions. After exploring for some time and creating a larger known safe area, the robot
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Figure 4.3: Nine frames showing the progression of the navigation task around a risk zone
at evenly spaced intervals. Gray zones represent areas where traversability f(x) is less than
1000.

was positioned at a new starting point with the goal of reaching the opposite side of the

environment.

As illustrated in Figure 4.5, the robot efficiently navigates across a previously learned

safe corridor around the high-risk area. This traversal completed in only 10 iterations, as

the robot was able to utilize the large safe zone to travel without stopping, only beginning

to take new measurements after reaching the first sub-goal.

The robot maintains its safety-conscious behavior throughout the traversal, staying within

the previously established safe zones and avoiding unnecessary re-exploration of the envi-

ronment. This capability is particularly valuable in applications where repeated navigation

through partially known environments is required, such as periodic inspection tasks or multi-

objective missions.
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Figure 4.4: Nine frames showing the progression of the navigation task around a risk zone
at evenly spaced intervals. Gray zones represent areas where traversability f(x) is less than
500.

4.1.3.5 Exploring Without a Goal in Mind

When given the task to simply explore without a goal in mind, the robot selects sub-goals

that maximize terrain uncertainty reduction, independent of any goal location. As can be

seen in Figure 4.6, the robot selects points where the most information can be revealed about

the map. It expands the safe zone as quickly as possible, resulting in a larger known area,

shown in Figure 4.7, faster than in a goal-oriented navigation task.

This exploration behavior demonstrates how SRPGT can be applied to general environ-

mental mapping tasks without requiring predefined destinations. The algorithm prioritizes

points at the frontiers of the known safe region, systematically expanding the mapped area

while maintaining safety constraints. In just 9 iterations, the robot has successfully mapped
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Figure 4.5: Nine frames showing the progression of the navigation task at evenly spaced
intervals. Gray zones represent areas where traversability f(x) is less than 1000.

a significant portion of the accessible environment, creating a comprehensive safety map.

This scenario proves particularly useful for robots that have just deployed in a small

safe area without prior inspection of the surroundings. Running an exploration task before

assigning an explicit navigation goal allows the system to build a safety model of the envi-

ronment, which can subsequently enhance the efficiency of goal-directed tasks by reducing

the need for cautious exploration during navigation.

4.1.4 Comparisons to Baseline Methods

4.1.4.1 Comparison to Reactive Baseline Navigation

To further contextualize the performance of SRPGT, we compare it to a standard reactive

navigation baseline shown in Figure 4.8 that lacks probabilistic terrain modeling and safe
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Figure 4.6: The first nine frames of the exploration task. Gray zones represent areas where
traversability f(x) is less than 1000.

set reasoning. The baseline method operates under the assumption that the robot can safely

navigate directly toward the goal along the shortest Euclidean path, adjusting only when

immediate obstacles are encountered.

This naive strategy fails to account for terrain risk unless the risk manifests as an explicit

obstacle in a local sensing field. As a result, when the shortest path intersects a high-risk

region not detectable by general sensing methods, the robot proceeds directly through it,

leading to unsafe behavior and frequent failures. In contrast, SRPGT actively models the

risk of terrain using a Gaussian Process and expands a certified safe set around the robot.

It selects subgoals based not solely on distance but on estimated safety and uncertainty.

The introduction of the safe zone representation and confidence-based subgoal selection

allows SRPGT to anticipate and avoid unsafe terrain even before it is physically encoun-
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Figure 4.7: Nine frames showing the overall progression of the exploration task. Gray zones
represent areas where traversability f(x) is less than 1000.

tered. Across all scenarios presented in this chapter—including those with complex terrain

topographies and non-convex risk zones—SRPGT achieved a 0% failure rate, provided that

the hyperparameters (e.g., Lipschitz coefficient L, exploration parameter β) were appropri-

ately tuned to accurately reflect the underlying terrain characteristics.

This performance contrast highlights the fundamental advantage of combining propri-

oceptive sensing, probabilistic terrain modeling, and confidence-aware planning. Without

these components, as shown in the baseline strategy, the robot is prone to entering un-

safe terrain. With SRPGT, the robot instead exhibits foresight, adaptability, and safety-

conscious behavior—capabilities essential for autonomous planetary exploration in uncertain

and deformable environments.
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Figure 4.8: The baseline navigation result, as shown for the scenario in Figure 4.3.

Table 4.1: Performance Comparison Between SRPGT and Reactive Baseline

Metric Reactive Baseline SRPGT
Success Rate Low; guaranteed failure

when passing risky terrain
High; 0% failure rate with
accurately tuned hyperpa-
rameters

Path Length Shortest-path by default,
but often unsafe or infeasi-
ble

Slightly longer paths that
avoid risk zones; consis-
tently feasible

Computational Efficiency Low; minimal computation,
but unsafe

Moderate; additional over-
head for GP and confidence
checks, but manageable in
real time

4.1.4.2 Comparison to Prior Gaussian Process-Based Planning

While the reactive baseline illustrates the importance of terrain modeling and safety-aware

planning, it is also valuable to compare SRPGT against more structured, probabilistically

informed methods. One such method is the framework proposed by Leininger et al. [5],

which combines Sparse Gaussian Processes (SGP) with RRT*-based motion planning. This

approach offers global terrain reasoning and path planning capabilities using uncertainty-

aware models. However, SRPGT distinguishes itself through a number of architectural and
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operational design choices that make it more suitable for granular terrain exploration using

local feedback.

4.1.4.2.1 Planning Strategy. Leininger et al. [5]’s approach constructs global paths

to the goal using RRT* over a probabilistic terrain cost map. This requires maintaining

and updating a global terrain estimate and is most effective in structured or semi-known

environments. In contrast, SRPGT takes a reactive planning approach that forgoes global

path computation in favor of incremental, confidence-aware subgoal selection from a locally

expanding safe set. This supports greater flexibility in dynamically evolving or unknown

environments.

4.1.4.2.2 Uncertainty Handling. While both methods utilize Gaussian Process mod-

els to estimate terrain risk and uncertainty, SRPGT directly incorporates the GP confidence

bounds into its decision-making loop. The confidence intervals define both the safe and

expander sets that determine feasible and informative next steps. In the SGP-RRT* for-

mulation, uncertainty is treated as a scalar cost modulation rather than as a constraint

mechanism to enforce safety under uncertainty.

4.1.4.2.3 Sensing Assumptions. A critical difference lies in sensing modality. The

SGP-RRT* planner assumes access to exteroceptive observations, such as visual or remote

terrain features, to update the GP model. In contrast, SRPGT is built for scenarios in which

such sensing may be unavailable or unreliable. It relies solely on proprioceptive feedback

gathered through direct terrain interaction—making it particularly well-suited for planetary

missions in dust-obscured or visually degraded environments.

Taken together, these distinctions highlight how SRPGT extends the capabilities of

uncertainty-aware terrain modeling into domains where traditional planning pipelines fall

short. The integration of proprioceptive sensing, real-time safe set expansion, and local

control makes SRPGT more resilient in scenarios where structural assumptions break down.
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4.2 Conclusions from Simulation Trials

The simulation experiments presented in this chapter validate the intended capabilities of

SRPGT under a variety of terrain conditions and risk scenarios. The robot successfully

performs uncertainty-aware navigation around hazardous terrain, reuses previously acquired

safe knowledge to complete tasks more efficiently, and performs autonomous environmental

mapping using only local proprioceptive measurements.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented a novel navigation framework for proprioceptive terrain-aware explo-

ration in granular environments, where conventional visual sensing is unreliable or unavail-

able. The system was designed to address the core challenges of uncertainty, deformability,

and incomplete knowledge that arise in planetary terrain scenarios. By integrating Gaus-

sian Process-based terrain modeling, confidence-guided safe set expansion, and diffeomorphic

reactive control, SRPGT enables legged robots to safely and adaptively explore unknown

environments using only local physical interaction.

Through simulation-based validation, SRPGT demonstrated three key capabilities: safely

navigating around high-risk terrain, efficiently reusing previously learned safe paths, and

rapidly expanding known terrain through exploratory behavior. Unlike prior approaches that

rely on global visual maps or precomputed paths, SRPGT achieves safety-aware navigation

using real-time proprioceptive measurements and confidence-aware planning, filling a critical

gap in current planetary robotics literature.

This work contributes a unified framework for autonomous, local-information-driven ex-

ploration under risk constraints, opening new possibilities for robotic operation in visually

degraded and mechanically unstable environments.
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5.2 Future Work

While the proposed method successfully addresses many core challenges, several directions

remain open for further enhancement and investigation.

5.2.1 Adapting the Kernel Model for Terrain-Specific Exploration

One limitation of the current system lies in the use of a radial basis function (RBF) ker-

nel with a fixed length scale. Although this kernel captures smooth terrain correlations

effectively, it assumes spatial homogeneity across the entire domain. In practice, terrain

conditions often vary dramatically—some areas may require finer resolution due to localized

instability, while others may permit broader generalization.

To address this, future work could explore the use of attentive or adaptive kernels [16] that

dynamically adjust the kernel length scale based on local terrain variation or uncertainty.

This would allow SRPGT to quickly sweep through regions of low complexity while cautiously

probing areas with steep gradients or sparse data. Such local adaptivity may reduce sampling

requirements and improve both efficiency and safety in real-world deployments.

5.2.2 Bayesian Planning to Avoid Frontier Oscillation

Another improvement involves extending the planning strategy beyond the current greedy

sampling approach. At present, SRPGT selects the next expander point based on the highest

local uncertainty, which can lead to inefficient ”zig-zagging” behavior when traversing across

a discrete frontier of uncertain terrain. This behavior, illustrated in Figure 5.1, arises because

uncertainty is reduced only in the immediate vicinity of each expander, causing its neighbors

momentarily become the new most uncertain.

To overcome this limitation, future versions of SRPGT could incorporate probabilistic

or belief-space planning frameworks, such as partially observable Markov decision processes

(POMDPs). These models consider both the robot’s current knowledge and its uncertainty
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Figure 5.1: ”Zig-Zag” behavior of the robot when searching in a straight line.

over future terrain, allowing actions to be chosen based on expected long-term information

gain or goal reachability. Rather than selecting the immediate best expander point, the robot

could simulate sequences of actions that maximize the likelihood of expanding the frontier

coherently or reaching a distant goal safely.

Such methods would reduce redundant sampling and promote smoother, more globally

directed navigation. Ultimately, this integration could yield an exploration strategy that

balances near-term caution with long-term progress, improving performance in both open

and constrained terrains.

5.2.3 Integration with Exteroceptive Sensing to Include Planning

for Physical Obstacles

While SRPGT excels at evaluating terrain risk through proprioceptive interaction, it cur-

rently assumes that all safe areas are also free of physical obstructions. In practical planetary

scenarios, however, safe terrain may still contain non-traversable obstacles such as rocks, out-
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crops, or structural debris. These features are often static, geometrically well-defined, and

perceptible through standard sensing modalities such as stereo vision, LiDAR, or depth

cameras—even in partially degraded visual conditions.

Future work could enhance the current framework by integrating conventional extero-

ceptive sensors to build geometric representations of physical obstacles within the safe set.

By fusing proprioceptive terrain safety maps with geometric occupancy grids or semantic

segmentation outputs, the robot could distinguish between terrain that is merely risky (e.g.,

soft or unstable) and terrain that is physically blocked. This would allow for more nuanced

path planning decisions—for instance, avoiding areas that are both risky and cluttered, while

still exploring marginally risky but obstacle-free terrain.

Furthermore, this integration would enable multi-layered constraint handling within the

local control policy. The diffeomorphic mapping currently used to avoid terrain-based ob-

stacles can be used to encode hard geometric constraints derived from point cloud clustering

or shape modeling.

Incorporating geometric obstacle information opens the door to hybrid planning tech-

niques, where a higher-level geometric planner filters feasible corridors while SRPGT locally

selects among those corridors based on proprioceptive risk. This two-tiered approach could

significantly improve global efficiency, especially in cluttered environments where terrain risk

alone does not fully constrain the robot’s motion.

Together, these enhancements would elevate SRPGT from a proprioceptive-only planner

to a more complete terrain-aware motion planning framework, capable of leveraging multiple

sensing modalities to ensure both geometric and mechanical safety.
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Appendix A

Configuration File Parameters

The following configuration parameters are available in the code demonstration and can be

modified through the provided configuration file. These settings control the environment,

robot behavior, optimization strategy, and display preferences.

Environment Parameters

• environment.FILENAME - Specifies the terrain data file (e.g., "terrain.csv").

• environment.THRESHOLD - Sets the safety threshold for classifying terrain as

safe or unsafe.

• environment.SIMPLIFICATION CONSTANT—Adjusts the simplification level

of obstacle polygons derived from unsafe regions.

Robot Parameters

• robot.ROBOT RADIUS: Defines the robot’s physical radius, used for collision

checking and power diagram erosion.

• robot.MODE: Specifies the robot’s operation mode (e.g., "navigate" for goal-directed

movement).
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Optimization Parameters

• optimization.NUM EXPANDERS: Determines the number of candidate points

evaluated for safe set expansion.

• optimization.KERNEL VARIANCE: Sets the variance parameter of the GP ker-

nel for terrain risk modeling.

• optimization.KERNEL LENGTHSCALE: Sets the length scale of the GP kernel,

controlling spatial smoothness.

• optimization.BETA: Configures the confidence interval scaling factor used in the

upper confidence bound (UCB).

• optimization.LIPSCHITZ: Defines the Lipschitz constant assumed during safe set

growth calculations.

Display Parameters

• display.BUFFER SIZE: Sets the buffer size for storing and visualizing simulation

frames.

All parameters are editable prior to runtime and are loaded automatically at initial-

ization. This modular design facilitates reproducibility and allows users to test different

configurations without modifying source code.
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Appendix B

Simulation Configuration

This appendix documents the configuration settings used to generate the simulation results

presented in Chapter 4. The parameters were specified using a structured configuration file,

which enabled reproducible control over the robot’s behavior and the optimization environ-

ment.

Configuration File Structure

The configuration file is divided into thematic sections: environment, robot, optimization,

and display. The following settings were used for Scenarios 1 and 2 (”Navigation Around a

Risk Zone” and ”Traversing Across Known Safe Area”). For Scenario 3 (”Exploring Without

a Goal in Mind”), the only change was setting environment.MODE to "explore".

[environment]

FILENAME = "terrain.csv"

THRESHOLD = 1000

SIMPLIFICATION_CONSTANT = 4

[robot]

ROBOT_RADIUS = 2

MODE = "navigate"

[optimization]
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NUM_EXPANDERS = 40

KERNEL_VARIANCE = 2

KERNEL_LENGTHSCALE = 30

BETA = 3

LIPSCHITZ = 0.003

[display]

BUFFER_SIZE = 1
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